
Rectangle Enclosed Triangular Grid Exploration with Myopic
Luminous Robots

Raja Das

Department of Mathematics

Jadavpur University

Kolkata, West Bengal, India

rajad.math.rs@jadavpuruniversity.in

Pritam Goswami

Department of Computer Science and Engineering

Sister Nivedita University

Kolkata, West Bengal, India

pgoswami.cs@gmail.com

Brati Mondal

Department of Mathematics

Jadavpur University

Kolkata, West Bengal, India

bratim.math.rs@jadavpuruniversity.in

Buddhadeb Sau

Department of Mathematics

Jadavpur University

Kolkata, West Bengal, India

buddhadeb.sau@jadavpuruniversity.in

Abstract
One of the fundamental problems of distributed systems that has

been extensively studied is the exploration of different network

topologies. In exploration, each node of the graph network has

to be visited by at least one robot within a finite time. Existing

literature typically assumes on various networks like lines, rings,

tori, arbitrary networks, and rectangular grids. To the best of our

knowledge, no existing work has addressed the exploration problem

considering triangular grid. In this work the exploration problem

is considered on rectangle enclosed triangular grid (RETG) with my-

opic robots, where the visibility of the robot is limited to a specific

distance, denoted as 𝜙 , since infinite visibility becomes impractical

for a very large network. The robots are luminous and work under

FSYNC scheduler. Firstly the cases where the perpetual RETG ex-

ploration is not possible are discussed in three impossibility results.

Then two algorithms are provided to solve the exploration problem

on RETG. The first algorithm requires two robots without common

chirality, 𝜙 = 1, and three colors of light. The second algorithm

requires two robots with common chirality, 𝜙 = 2, and two colors

of light. Using luminous robots to decrease both visibility and the

number of robots is a nice trade-off from the implementation’s

point of view as increasing visibility is more expensive than using

robots with a light having finite colors.

CCS Concepts
• Theory of computation→ Distributed algorithms.
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Myopic robot, Autonomous robots, Robot with lights, Triangular

grid, Perpetual exploration, Distributed algorithms
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1 Introduction
In the realm of distributed systems, there has been substantial

and active research on swarm robot algorithms over the past two

decades. A swarm of robots typically comprises multiple simple

and cost-effective units that operate autonomously to fulfill specific

tasks, such as gathering at a point, forming patterns, exploring a

network, and many others. The appeal of this research area lies in

its numerous real-world applications, such as patrolling areas inac-

cessible to humans, cleaning large surfaces, maintaining networks,

etc.

In most of the works in this field, the robots are considered to

have no unique identifiers i.e., they are anonymous. They are also

considered to be physically indistinguishable and run the same al-

gorithm i.e., they are identical and homogeneous. The robots operate
in a Look-Compute-Move cycle also known as LCM cycle. A robot

has two states idle state and non-idle state. Activation of a robot

denotes the transformation from its idle state to the non-idle state.

The non-idle state has three phases called Look phase, Compute

phase and Move phase. In the Look phase, a robot takes a snapshot

of its visible surroundings and gets information about other robots

it can see, according to its own local coordinate system. In the Com-

pute phase the robot runs an algorithm with the information from

the Look phase as input and as an output it gets a location where it

moves during the Move phase. After completing these phases, the

robot reverts to the idle state until the next activation, constituting

the recurring LCM cycle.

The activation moment and duration of a robot’s activity have

an impact on the snapshots of other robots in a swarm robot system.

Therefore, the manner in which robots are activated plays a crucial

role. It is presumed that a scheduler is responsible for activating the
robots and managing the time they spend executing the LCM cycle.

In existing literature, three types of schedulers are identified: fully
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synchronous (FSYNC), semi-synchronous (SSYNC), and asynchronous
(ASYNC).

In FSYNC and SSYNC schedulers, time is partitioned into rounds

of equal length. Robots are activated at the start of a round and

synchronously go through the Look, Compute, and Move phases

once in that round. The time allocated for each phase is uniform

for all robots. The key distinction between FSYNC and SSYNC

schedulers lies in the number of robots activated in a round. In

an FSYNC scheduler, all robots are activated in each round, while

in an SSYNC scheduler, only a nonempty subset of robots may be

activated in a round.

In contrast, in an ASYNC scheduler, there is no concept of rounds.

At any given moment, a robot could be in its Look phase, while

others might be in an idle state, Compute phase, or executing

the Move phase. Furthermore, the time duration for each of the

Look, Compute, and Move phases is not consistent for robots in

an ASYNC scheduler.

1.1 Background and Motivation
In this work, we are focusing on the problem of exploration in

graph networks where each node has to be visited by at least one

robot within a finite time. There are two variations of exploration,

perpetual and terminating. In perpetual exploration, every node

needs to be visited infinitely often while in terminating exploration

the robots terminate within a finite time after each node is visited at

least once by some robot. These fundamental problems have been

extensively investigated in the past two decades across various

network topologies, including rings (terminating exploration in

[11, 14, 15] and perpetual exploration in [1]) and finite rectangu-

lar grids (terminating in [8, 9] perpetual in [2]). Other than these,

terminating exploration is also studied in various other network

topologies such as lines ([13]), trees ([12]), tori ([10]), and arbitrary

networks ([5]). Existing research typically assumes unlimited visi-

bility for each robot, meaning that each robot can perceive all other

robots in the network. However, this assumption becomes imprac-

tical for very large networks. Consequently, recent works have

shifted focus to myopic robots, where a robot’s visibility is limited

to a specific distance, denoted as 𝜙 . Terminating exploration on

rings with 𝜙 = 1 and 𝜙 = 2, 3 was studied by Datta et al. in [6] and

[7] respectively. The limitation of myopic robots without persistent

memory and communication capabilities made exploration impos-

sible in various scenarios. To address this, many studies propose

the use of Luminous robots that are equipped with persistent lights,

serving as both constant memory and a communication medium

for a robot.

Exploration of infinite grids was explored by Bramas et al. ([3])

involving myopic luminous and non-luminous robots. In ([4]), per-

petual exploration of a finite rectangular grid was first investigated

using myopic luminous and non-luminous robots, assuming com-

mon chirality (i.e., all robots agreeing on a common clockwise

direction) under the FSYNC model. The same problem was then

studied in ([16]), assuming robots do not share common chirality.

In this work, we have considered the problem of exploration of a

rectangle enclosed triangular grid (RETG) with myopic robots under

the luminous model. Informally, a rectangle enclosed triangular
grid is the part of an infinite triangular grid that is on or inside a

rectangle embedded in the infinite triangular grid in such a way

that a pair of parallel sides of the rectangle aligns with a pair of

parallel sides of the infinite triangular grid.

To the best of our knowledge, no existing work has addressed the

exploration problem within a triangular grid. The triangular grid

has recently garnered attention owing to its diverse applications

in programmable matters. Additionally, when viewed from an area

coverage standpoint, the maximum area is efficiently covered by a

network of 𝑛 sensors arranged in a triangular grid ([17]). Thus con-

sidering the exploration of a triangular grid is naturally of practical

interest.

Note that we can not apply the algorithms of the rectangular

grid in RETG directly. The corner nodes of a rectangular grid are

of degree two and the boundary nodes of a rectangular grid are

of degree three but the corner nodes of a RETG can be of degree

two or degree three and the boundary nodes of a RETG can be of

degree three or degree five or degree four. In fact a robot with one

hop visibility at a corner node of degree three has the same view

if the robot is at a boundary node of degree three in a RETG. We

have overcome these challenges in this work.

1.2 Our Contribution
In this work, we have studied the problem of perpetual exploration

of a rectangle enclosed triangular grid with myopic luminous robots

under an FSYNC scheduler. Without assuming common chirality

we have provided one algorithm𝐴𝑉𝑅𝐿
123

. The algorithm,𝐴𝑉𝑅𝐿
123

solves

the perpetual exploration using two luminous robots with three

colors having visibility 𝜙 = 1. Here, using luminous robots we got

the opportunity to decrease both visibility and the number of robots

which is a nice trade-off as increasing visibility is more expensive

than equipping a robot with a light having finite colors from the

implementation’s standpoint. Assuming common chirality, we have

provided another algorithm 𝐴𝑉𝑅𝐿
222

for perpetual exploration using

two robots equipped with a light having two colors and 𝜙 = 2. We

provide a network comparison table (Table 1) to compare finite

rectangular grid and rectangle enclosed triangular grid (RETG) in

terms of perpetual exploration. From this table, it can be observed

that,

(1) Without chirality agreement, two luminous robots having

any finite colors and 𝜙 = 1 can not explore a rectangular grid

perpetually but two luminous robots with just three colors

and 𝜙 = 1 can explore a RETG perpetually.

(2) With chirality agreement the best-known algorithm to ex-

plore a rectangular grid perpetually requires two luminous

robots having two colors and visibility 𝜙 = 2. This is also

sufficient to explore a RETG perpetually.

Thus our results are also kind of an indication that RETG is more

practical in terms of exploration than a rectangular grid.

2 Model, Definitions and preliminaries
Consider an infinite triangular grid i.e. a graph with infinite nodes

(say 𝑁 ) and each node is of degree six and each face of the graph is

identical to an equilateral triangle of unit-length sides. Note that

an infinite triangular grid has three families of parallel sides. Now

we embed a rectangle on the infinite triangular grid in such a way

that a pair of parallel sides of the rectangle aligns with a pair of

250



Rectangle Enclosed Triangular Grid Exploration with Myopic Luminous Robots ICDCN 2025, January 04–07, 2025, Hyderabad, India

Network 𝜙 # Robots # Colors Chirality Algorithm

Rectangular

Grid

1 2 Finite No

Impossible

([16])

Rectangular

Grid

1 3 3 No

𝑉𝑜𝑛𝑒3
3

([16])

RETG
1 2 3 No

𝐴𝑉𝑅𝐿
123

[This

work]

Rectangular

Grid

2 2 2 Yes 𝑉𝑡𝑤𝑜2
1
([4])

RETG
2 2 2 Yes

𝐴𝑉𝑅𝐿
222

[This

work]

Table 1: Network Comparison Table

parallel sides of the infinite triangular grid. Let 𝑁 ′
be the subset

of 𝑁 and all the nodes which are on or inside the rectangle are

elements of 𝑁 ′
. The subgraph induced by 𝑁 ′

is called a rectangle
enclosed triangular grid (RETG). In this work we have considered

all possible RETGs (see Fig 1) depending on the degree of the nodes.

Figure 1: Different type of RETGs

In this work, we have considered a fully synchronous scheduler

and luminous robots with one and two hop visibility.

In this work, the robots are fully disoriented. We have given an

algorithm where the robots have consistent chirality i.e. the clock-

wise sense remains the same in each round. In another algorithm,

the robots have a common chirality.

Definition 2.1 (Column). The straight lines of a rectangle enclosed
triangular grid (RETG) are called columns if they are parallel to a

side of the rectangle.

The columns of a RETG are denoted as 𝐶𝑖 , where 1 ≤ 𝑖 ≤ 𝑘 .

𝐶𝑖 being the 𝑖-th column from "left". This "left" is from a global

perspective, required only for the proof. The robots do not agree in

any direction.

In this work, we have considered the RETGs with at least four

columns and each column with at least four nodes.

Definition 2.2 (Diagonal lines). The straight lines of a rectangle
enclosed triangular grid (RETG) are called diagonal lines if they are

not parallel to any side of the rectangle.

In a RETG all nodes that are topmost in some column, together

form the upper boundary of the RETG. Similarly, all the lowest nodes

of each column form the lower boundary, nodes on the leftmost

column form the left boundary, and nodes on the rightmost column

form the right boundary. By Corner nodes, we mean the topmost

and lowest nodes of both 𝐶1 and 𝐶𝑘 .

Our aim is to provide some algorithms, which will be executed

by the robots presented on the nodes of a RETG so that the robots

will visit each node of the RETG infinitely many times without any

collision. The robots must form some specific configuration at the

beginning of each algorithm. 𝐴𝑉𝑅𝐿
𝑖 𝑗𝑘

denotes algorithm with 𝑖 hop

visibility, 𝑗 robots, and 𝑘 colors of light. In 𝐴𝑉𝑅𝐿
123

the robots have

consistent chirality i.e. the clockwise sense remains the same in

each round. In 𝐴𝑉𝑅𝐿
222

the robots have common chirality.

3 Impossibility results
In this section, we have given three impossibility results. Here we

have given the sketches of the proofs.

Theorem 3.1. The perpetual RETG exploration is not possible with
only one robot, for any number of light and any finite visibility range.

Sketch of the proof : We have considered sufficient large RETG

such that if a robot stays in the middle of the RETG, the robot

can not see the boundary even after one hop movement in any

direction. Since the robot is inconsistent, the adversary can set the

local coordinate system in each round in such a way that the robot

will move between two nodes only.

Theorem 3.2. The perpetual RETG exploration is not possible with
only two robots, for one light and two hop visibility range.

Sketch of the proof : We have considered sufficient large RETG

such that if two robots stay at one hop distance from the middle

of the RETG, the robots can not see boundary even after a finite

number of one hop movement in any direction. Since the robots

are inconsistent, adversary can set the local coordinate system in

each round in such a way that the robot will move around a few

nodes only or they become separated from each other’s visibility

range and Theorem 3.1 follows.

Theorem 3.3. The perpetual RETG exploration is not possible with
only two robots, for any number of light and zero visibility range.

Sketch of the proof : Since the robots are inconsistent and the vis-

ibility range is zero, adversary can set the local coordinate systems

in each round in such a way that a robot will collide with the other

robot within finite rounds irrespective of initial positions.

4 Algorithm 𝐴𝑉𝑅𝐿
123

In this section we have introduced the algorithm 𝐴𝑉𝑅𝐿
123

for two

robots with one hop visibility and three colors of light. We have

given some definitions and preliminaries first. Then we have given

the description of the algorithm 𝐴𝑉𝑅𝐿
123

.
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4.1 Definitions and preliminaries
Definition 4.1 (𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿

123
). A configuration with two robots that

are on adjacent nodes of a RETG and one robot (say 𝑟1) with color

𝐿 or 𝑅 and another robot (say 𝑟2) with color 𝐹 is called an 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

configuration and denoted as (𝑟1, 𝑟2).

𝐴𝑉𝑅𝐿
123

algorithm is initiated assuming the initial configuration

to be an 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

. Also since the scheduler is fully synchronous

the algorithm 𝐴𝑉𝑅𝐿
123

ensures that the configuration always remains

an 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

configuration.

Definition 4.2 (Erect configurations). A configuration with two

robots that are on the same column and are on adjacent nodes is

called an erect configuration.

In an erect configuration the robot which is above the other

robot on some column 𝐶𝑖 from a global perspective is called the

upper robot and the other robot is called the lower robot. By 𝐸
𝑐𝑙𝑟1
𝑐𝑙𝑟2

we denote an erect configuration where the upper robot has color

𝑐𝑙𝑟1 and the lower robot has color 𝑐𝑙𝑟2. In our algorithm ?? there
can be four types of erect configurations. These are 𝐸𝐿

𝐹
, 𝐸𝐹

𝑅
, 𝐸𝑅

𝐹
and

𝐸𝐹
𝐿
. Note that, the robots can not distinguish which one is upper

and which one is lower robot as they do not have any directional

agreement. The definition here is only for the purpose of proof.

Definition 4.3 (𝐸1-type erect configurations). 𝐸𝐿𝐹 , 𝐸
𝐹
𝑅
configura-

tions on 𝐶1; 𝐸
𝑅
𝐹
, 𝐸𝐹

𝐿
configurations on 𝐶𝑘 and 𝐸𝐿

𝐹
, 𝐸𝐹

𝑅
, 𝐸𝑅

𝐹
, 𝐸𝐹

𝐿
con-

figurations on 𝐶𝑖 for 2 ≤ 𝑖 ≤ 𝑘 − 1 are called 𝐸1-type erect configu-

rations.

Definition 4.4 (𝐸2-type erect configurations). 𝐸𝑅𝐹 , 𝐸
𝐹
𝐿
configura-

tions on 𝐶1 and 𝐸𝐿
𝐹
, 𝐸𝐹

𝑅
configurations on 𝐶𝑘 are called 𝐸2-type

erect configurations.

Definition 4.5 (Diagonal configurations). A configuration consist-

ing of two robots that are on the adjacent nodes and which is not

an erect configuration is called a diagonal configuration.

Definition 4.6 ( 𝑑1-type diagonal configurations). Let 𝑣 be a corner
node of a RETG such that 𝛿 (𝑣) = 3. Then a configuration will be

called a 𝑑1-type diagonal configuration if one of the four following

conditions is satisfied.

(1) 𝑣 is the upper boundary node of 𝐶1. A robot with color 𝐿 is

on 𝑣 and another robot with color 𝐹 is on the upper boundary

node of 𝐶2.

(2) 𝑣 is the lower boundary node of 𝐶1. A robot with color 𝑅 is

on 𝑣 and another robot with color 𝐹 is on the lower boundary

node of 𝐶2.

(3) 𝑣 is the upper boundary node of 𝐶𝑘 . A robot with color 𝑅 is

on 𝑣 and another robot with color 𝐹 is on the upper boundary

node of 𝐶𝑘−1.
(4) 𝑣 is the lower boundary node of 𝐶𝑘 . A robot with color 𝐿 is

on 𝑣 and another robot with color 𝐹 is on the lower boundary

node of 𝐶𝑘−1.

Definition 4.7 ( 𝑑2-type diagonal configurations). Any diagonal

configuration which is not a𝑑1-type diagonal configuration is called

a 𝑑2-type diagonal configuration.

4.2 Description of 𝐴𝑉𝑅𝐿
123

At the beginning of 𝐴𝑉𝑅𝐿
123

two robots can be anywhere on a RETG

provided they are on adjacent nodes and two robots with different

colors. Without this assumption, the problem can not be solved

because if two robots have the same color either they will be in a

livelock situation or the visibility graph will be disconnected. So

one of the robots (say 𝑟1) is with color 𝐿 or 𝑅 and another robot (say

𝑟2) is with color 𝐹 . 𝑟1 is the leader and 𝑟2 is the follower. The color

𝐿 indicates Left, 𝑅 indicates Right, and 𝐹 indicates follower. The
robot 𝑟1 with color 𝐿 or 𝑅 can switch between these two colors. The

robot 𝑟2 with color 𝐹 never changes color and always follows 𝑟1. By

definition 4.1 these initial configurations are denoted as 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

.

Since the scheduler is fully synchronous 𝐴𝑉𝑅𝐿
123

ensures 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

configuration remains 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

configuration after each round.

Now we present a high level idea of the algorithm𝐴𝑉𝑅𝐿
123

. We first

ensure that if the configuration is an 𝐸1 − 𝑡𝑦𝑝𝑒 erect configuration

then the perpetual exploration of the RETG can be done by the

robots. On the other hand if the initial configuration is not an

𝐸1 − 𝑡𝑦𝑝𝑒 erect configuration, the primary goal of our algorithm is

to form an 𝐸1 − 𝑡𝑦𝑝𝑒 erect configuration first.

4.2.1 Formation of 𝐸1 − 𝑡𝑦𝑝𝑒 erect configuration : If (𝑟1, 𝑟2) is not
𝐸1-type erect then (𝑟1, 𝑟2) must be anyone among 𝐸2-type erect, 𝑑1-

type diagonal and𝑑2-type diagonal. The first target of the algorithm

is to make the configuration 𝐸1-type erect. If 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
123

is a 𝑑2-

type diagonal configuration then the configuration will become

𝐸1-type erect. If 𝐼𝑛𝑖𝑡𝐴
𝑉𝑅𝐿
123

is a 𝑑1-type diagonal configuration then

the configuration will become 𝐸1-type erect. If 𝐼𝑛𝑖𝑡𝐴
𝑉𝑅𝐿
123

is a 𝐸2-

type erect configuration then the configuration will become 𝐸1-type

erect.

4.2.2 Exploration of the RETG from 𝐸1 − 𝑡𝑦𝑝𝑒 erect configuration :
In 𝐸1-type erect configuration the robots belong to the same col-

umn. Then the robots move along the column until 𝑟1 reaches the

boundary maintaining the 𝐸1- type erect configuration. After that

the robots go to the next column with 𝐸1- type erect configura-

tion and start moving in the opposite direction i.e. if the robots

were going downwards through the previous column then they will

move upwards through the current column or if the robots were

going upwards through the previous column then they will move

downwards through the current column.

Suppose the robots move upwards through 𝐶𝑖 where 2 ≤ 𝑖 ≤
𝑘 − 2 with 𝑟1 having color 𝑅 then after reaching the top most node

of 𝐶𝑖 the robots will enter 𝐶𝑖+1 and start moving downwards with

𝑟1 having color 𝐿. After reaching the bottom most node of 𝐶𝑖+1 the
robots will enter 𝐶𝑖+2 and start moving upwards with 𝑟1 in color 𝑅.

In this way, the robots explore each column from 𝐶𝑖+1 to 𝐶𝑘−1 and
will reach𝐶𝑘 . After exploring𝐶𝑘 the robots will enter𝐶𝑘−1 or𝐶𝑘−2
depending on the degree of the last visited node of𝐶𝑘 . If the degree

is two then the robots will enter 𝐶𝑘−1 and if the degree is three

then the robots will enter 𝐶𝑘−2. The color of 𝑟1 will be the color
which helps the robots to explore columns from higher indices to

lower indices. It may happen that the robots miss to explore 𝐶𝑘−1
now but after returning from 𝐶1 they will explore 𝐶𝑘−1.

Similarly, it may happen that the robots miss to explore 𝐶2 after

exploring 𝐶1 but 𝐶2 is already explored just before the exploration

of 𝐶1 or 𝐶2 will be explored when the robots will return from 𝐶𝑘 .
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We can observe when 𝐶1 or 𝐶𝑘 is explored twice, all columns will

be explored. Thus after finite rounds, all the nodes of RETG will be

explored.

5 Algorithm 𝐴𝑉𝑅𝐿
222

In this section, we have introduced the algorithm 𝐴𝑉𝑅𝐿
222

for two

robots with two hop visibility and two colors of light.

Definition 5.1 (𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
222

). A configuration with two robots that

are on the same column or diagonal line of a RETG and are within

two hop distance from each other and one robot (say 𝑟1) with color

𝐿 and another robot (say 𝑟2) with color 𝐹 is called an 𝐼𝑛𝑖𝑡𝐴𝑉𝑅𝐿
222

configuration and denoted as (𝑟1, 𝑟2).
The idea of 𝐴𝑉𝑅𝐿

222
is similar to the idea of 𝐴𝑉𝑅𝐿

123
. In 𝐴𝑉𝑅𝐿

123
the

leader robot can be of two colors i.e., 𝐿 or 𝑅 and the follower robot
is of color 𝐹 . In 𝐴𝑉𝑅𝐿

222
the leader robot is of color 𝐿 and the follower

robot is of color 𝐹 . To represent the leader robot 𝐿 of 𝐴𝑉𝑅𝐿
222

as the

leader robot 𝐿 of 𝐴𝑉𝑅𝐿
123

the distance between two robots in 𝐴𝑉𝑅𝐿
222

has been made two hop and to represent the leader robot 𝐿 of𝐴𝑉𝑅𝐿
222

as the leader robot 𝑅 of 𝐴𝑉𝑅𝐿
123

the distance between two robots in

𝐴𝑉𝑅𝐿
222

has been made one hop.

6 Conclusion
In this work, two different algorithms are given to explore a RETG

perpetually. Three impossible results have been proven to show the

algorithms are optimal with respect to certain parameters. Execut-

ing 𝐴𝑉𝑅𝐿
123

two robots can explore a RETG perpetually with one hop

visibility and three colors of light. Executing 𝐴𝑉𝑅𝐿
222

two robots can

explore a RETG perpetually with two hop visibility and two colors

of light. In 𝐴𝑉𝑅𝐿
123

,
′𝑉 ′

denotes the visibility range of a robot and it

is one hop distance.
′𝑅′ denotes the number of robots needed for

the algorithm and it is two.
′𝐿′ denotes the number of colors used

for the light of a robot and it is three. 𝐴𝑉𝑅𝐿
123

is optimal with respect

to the number of robots if we fix 𝑉 = 1 and 𝐿 = 3. 𝐴𝑉𝑅𝐿
123

is optimal

with respect to visibility if we fix 𝑅 = 2 and 𝐿 = 3. 𝐴𝑉𝑅𝐿
222

is optimal

with respect to the number of robots if we fix 𝑉 = 2 and 𝐿 = 2.

𝐴𝑉𝑅𝐿
222

is optimal with respect to the number of lights if we fix𝑉 = 2

and 𝑅 = 2. As a future direction, it would be interesting to provide

algorithms under semisynchronous scheduler and asynchronous

scheduler.
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